Traditional and advance technology in Aquaculture and Fisheries

Ultraviolet system in Aquaculture: ULTRAAQUA UV systems continuously disinfect more than 100,000 m³/h of water in aquaculture systems. Millions of salmon, sturgeons, eels, turbot, sea bass etc. are produced in aquaculture systems worldwide. Here ULTRAAQUA UV systems have been chosen to increase security from infection diseases thereby protecting millions of invested dollars. Diseases such as Infectious Salmon Anemia (ISA) are prevented in Chile using ULTRAAQUA UV systems. This has given the respected fish farms security and reassurance that the fish is not infected. The UV systems are also easy to maintain, the lamp lifetime is 16.000 hours guarantied and they do not take up time in the daily routines. Therefore, our UV systems are highly recommended and used in several hundreds of aquaculture systems worldwide. Water abundance and purity continue to decline while disease concerns found in source waters continue to increase. Simultaneously, increased consumption of fish has led to growing demands for higher stock densities in the same hatchery footprint. Aquafina UV Systems are perfect for use in Fish hatcheries, Incubation, rehabilitation facilities, Depuration facilities, Aquariums Processing Plants Influent/effluent treatment

UV Applications in Aquaculture: Disinfection – the most common application of UV in water treatment. UV systems significantly reduce pathogen counts in incubation and rearing facilities and have proven to be the most cost-effective disinfection technology for the inactivation of many types of bacteria, viruses, and parasites harmful to many species of fish.

Ozone Destruction – ozone is often used in a fish hatchery to enhance the quality of problematic water sources used for incubating and rearing fish. However, residual ozone in the water can be extremely toxic or fatal to the aquatic life being reared. UV light systems are applied to consume the residual ozone in the bulk water prior to contacting the fish.

 Automatic Self-cleaning Micro Screen Filters used in aquaculture

Aqua care specifies micro screen Filters as a highly efficient solids removal filter for aquaculture applications. It is effective for fine and soft solids removal.

Aquaculture Pond Buoy: The Aquaculture Pond Buoy allows easy remote monitoring of dissolved oxygen levels and temperature in aquaculture pond raceways. The solar-powered buoy has an easy-to-use optical RDO Titan probe for 24-hour dissolved oxygen monitoring, plus a transceiver that transmits data wirelessly, right to your laptop or PC.

 Electropulse fishing: Electrofishing is a technique whereby electrical energy is put into the water and fish. Electrofishing relies on two electrodes which deliver direct current at high-voltage from the anode to the cathode through the water. When a fish encounters a large enough potential gradient on this path, it becomes affected by the electricity. Usually, pulsed direct current (DC) is applied, which causes muscular vibration in the fish, intercepting this energy, are drawn toward the probes and incapacitated in such a way that they can be captured with nets. The movement of fish toward the source of electricity is called galvanotaxis (uncontrolled involuntary muscular convulsion that results in the fish swimming toward the anode) and is believed to be a result of direct stimulation of the central and autonomic nervous systems which control the fish ‘s voluntary and involuntary reactions.

 The effectiveness of electrofishing is influenced by a variety of biological, technical, logistical, and environmental factors. The catch is often selectively biased as to fish size and species composition. When using pulsed DC for fishing, the pulse rate and the intensity of the electric field strongly influence the size and nature of the catch. The conductivity of the water, which is determined by the concentration in the water of charge carriers (ions), influences the shape and extent of the electric field in the water and thus affects the field's ability to induce capture-prone behavior in the fish.

 How it works

When a fish swims into a weak electrical field, it's going to not be affected in the slightest degree. There's a threshold of electrical charge that must be emitted into the water to effect on the fish. Once the electrical charge within the water is enough to allow transport of the charge across the nerve cells within the body, then the fish ‘s muscles can endure involuntary contraction. The contractions can cause increased exercise of the muscle and a buildup of feed within the blood stream. This method is incredibly almost like what happens to the muscles of a runner or a swimmer UN agency exerts a great deal of exercise. The runner or swimmer might eventually get a cramp within the muscle and can't move it effectively. once the fish cramps up, it floats to the surface and removed from the electrical field. The method to stun a fish is sometimes five – ten seconds.

 

    Related Conference of Traditional and advance technology in Aquaculture and Fisheries

    October 15-16, 2018

    World Food Science and Technology Congress

    Greece, Athens
    October 18-19, 2018

    European Aqua Congress

    Paris, France
    October 26-27, 2018

    Global Summit on Agriculture, Food Science and Technology

    Boston, Massachusetts, USA
    October 29-30, 2018

    6th Global Summit on Plant Science

    Valencia, Spain

    November 22-23, 2018

    International Conference on Agriculture, Food and Aqua

    Cape Town, South Africa
    November 29-30, 2018

    14th Annual Conference on Crop Science and Agriculture

    Bali, Indonesia
    November 29-30, 2018

    9th European Food Safety & Standards Conference

    Dublin, Ireland
    December 10-12, 2018

    World Congress on Food and Nutrition

    Dubai, UAE
    February 21-22, 2019

    24th International Conference on Food Engineering

    Osaka, Japan
    January 24-25, 2019

    8th Annual Congress on Nutraceuticals

    Ho Chi Minh City, Vietnam
    January 24-25, 2019

    10th Annual Congress on Food Safety

    Ho Chi Minh City, Vietnam
    February 18-19, 2019

    2nd International Conference on Food Safety and Health

    Abu Dhabi, UAE
    February 21-22, 2019

    15th World Congress on Aquaculture & Fisheries

    Osaka, Japan
    February 28-March 02, 2019

    22nd Euro-Global Summit on Food and Beverages

    London, UK
    February 28-March 01, 2019

    7th Annual Congress on Plant Science and Molecular Biology

    Osaka, Japan
    April 08-09, 2019

    12th World Congress on Plant Biotechnology & Agriculture

    Prague, Czech Republic
    April 12-13, 2019 |

    23rd International Conference on Food Fraud & Safety

    Toronto, Canada
    April 29-30, 2019

    13thWorld Congress on Aquaculture & Fisheries

    Seoul, South Korea
    July 15-16, 2019

    2nd European Food Chemistry & Nutrition Congress

    Amsterdam, Netherlands
    September 27-28, 2019

    10th international conference on Fisheries & Aquaculture

    Toronto, Canada
    October 28-29, 2019

    12th World Congress on Food Chemistry and Food Microbiology

    Johannesburg, South Africa

    Traditional and advance technology in Aquaculture and Fisheries Conference Speakers

    Recommended Sessions

    Related Journals

    Are you interested in